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Universality and Scaling in Gravitational Collapse of a Massless Scalar Field

Matthew W. Choptuik
Center for Relativity, University of Tezas at Austin, Austin, Texas 78712-1081
(Received 22 September 1992)

I summarize results from a numerical study of spherically symmetric collapse of a massless scalar
field. I consider families of solutions, S[p], with the property that a critical parameter value, p*,
separates solutions containing black holes from those which do not. I present evidence in support
of conjectures that (1) the strong-field evolution in the p — p* limit is universal and generates
structure on arbitrarily small spatiotemporal scales and (2) the masses of black holes which form
satisfy a power law Mgy o |p — p*|7, where v =~ 0.37 is a universal exponent.
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A numerical experiment...

e Consider scalar wave

1.2 ‘ ‘
O¢ = ¢®V, V¢ =0 Lm0 n
coupled to Einstein's equations s
e |nitial data 0.6}
3
2/ P2
¢ = nexp(—R°/R}) 0.4
. 0.0}
e try out different 7)... 1 =0.6
1 2z 3 4 5 6 7 38

Have critical value n, so that
N < 7k a— 1 end up with flat space

1N > Ny a — 0 end up with black hole

Black-hole threshold
0.3 <n, <04
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e Let's say scalar wave

06 = g™V, Vs =0
coupled to Einstein's equations 0sl » =031
e Initial data 0.6F
p=nep(-R/R) ol
0.2} &
e try out different 7)... M n =0.39
T 2 3 ;1 5 6 7

Have critical value n, so that
N < 7k a— 1 end up with flat space

1N > Ny a — 0 end up with black hole

Black-hole threshold
0.3 < n <0.31
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A numerical experiment...

e Let's say scalar wave

(¢ = g"VaViy¢ =0

coupled to Einstein's equations

e Initial data

6 = nexp(—FY/ )

e try out different 7)...

Have critical value n, so that
N < 7k a— 1 end up with flat space

1N > Ny a — 0 end up with black hole

Black-hole threshold
0.303 < n, < 0.304
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A numerical experiment...

e Let's say scalar wave 1.2
__ b
coupled to Einstein's equations 081 7 =U.3031
N 0.6{
e Initial data S
) ) 0.4 1
¢ = nexp(—R"/Ry)
0.2 1
_ o ‘k\_
0.0 1 =0.3039
- 0.2 - - -
e try out different 7)... 0 5 A 6

~

Have critical value n, so that
N < 7k a— 1 end up with flat space

n > 1 a— 0 end up with black hole

Black-hole threshold
0.3033 < n, < 0.3034
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A numerical experiment...

e Let's say scalar wave 19
0¢ = g* V.V =0 1.0 \
coupled to Einstein's equations 0.8  1=030331 \}
L 061 |
e Initial data 3
2/ P2 04 /|
¢ = nexp(—R"/Ry)
00T 030339 i
- —0.2 - - -
e try out different 7)... ; ; 0 ;

Have critical value n, so that
N < 7k a— 1 end up with flat space

n > 1 a— 0 end up with black hole

Black-hole threshold
0.30337 < n, < 0.30338
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e Let's say scalar wave
O¢ = ¢¥V, V¢ =0

coupled to Einstein's equations

e Initial data

6 = nexp(—FY/ )

e try out different 7)...

Have critical value n, so that
N < N« a— 1
N > N« a — 0
Black-hole threshold

1.2
1.01
0.8 n =0.303371
0.6 1
0.4 1
0.2 1

0.0
n =0.303379

—0.2 -
0 2

end up with flat space

end up with black hole

0.303375 < 1, < 0.303376
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A numerical experiment...

e Let's say scalar wave

b n =0.303371
Uo = g""VVyp =0 0.8 |
coupled to Einstein's equations 0.6,
e |nitial data S04
¢ = nexp(—R’/Ry) 0ol
| “L—JL

0.01 5 =0.303379 T
5.8 6.0 6.2 6.4 6.6

e try out different 7)...

Have critical value n, so that
N < 7k a— 1 end up with flat space

n > 1 a— 0 end up with black hole

Black-hole threshold
0.303375 < n, < 0.303376
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A numerical experiment...

e Let's say scalar wave

) n =0.3033751
o = gV V=0 0.8 1 |
coupled to Einstein’s equations 0.6
e Initial data S 0.4 |
2 2 // |
=nexp(—R°/R /
¢ = nexp( /1) 0.2 .
0.01 ;) —0.3033759

e try out different 7... 5’3 60 6.2 6.4 6.6

Have critical value n, so that
N < 7k a— 1 end up with flat space

n > 1 a— 0 end up with black hole

Black-hole threshold
0.3033759 < n, < 0.3033760
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e Let's say scalar wave
O¢ = ¢¥V, V¢ =0

coupled to Einstein's equations

e Initial data

6 = nexp(—FY/ )

e try out different 7)...

Have critical value n, so that
N < 7N«

1N > 7«
Black-hole threshold

a— 1

a— 0

0.81

0.6 1

0.2

0.0

n =0.30337591

1 =0.30337599

5.8

6.0

6.2

end up with flat space

end up with black hole

0.30337599 < n, < 0.30337600
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e Let's say scalar wave

n =0.303375991

(¢ = g*VaVy¢p =0 0.81
coupled to Einstein’s equations 0.6-
e Initial data S 041

¢ = nexp(—R*/Rj) -

v

001 5 =0.303375999

e try out different 7... '3 6.0 69 6.4

Have critical value n, so that
N < 7« a— 1 end up with flat space

N > Ny a — 0 end up with black hole
Black-hole threshold

0.303375994 < n, < 0.303375995
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A numerical experiment...

e Let's say scalar wave
ng = gabvavb ¢ =0

coupled to Einstein’'s equations

e Initial data

b= nexp(~R*/R})

e try out different ...

Have critical value n, so that
N < 7N«

n > M«
Black-hole threshold

a— 1

a— 0

0.6
0.4 1
0.2 1

0.0 1

end up with flat space

end up with black hole

n =0.303375991

1 =0.303375999

6.45

0.303375994 < n, < 0.303375995
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e Let's say scalar wave

Lo = g“bvavb b =0 061 " =0.3033759941
coupled to Einstein’s equations
0.4 1
e |nitial data .
¢ = nexp(—R*/Ry) 021 ,
0.0 —

n =0.3033759949

e try out different ... 615 6.50

t

Have critical value n, so that
N < 7« a— 1 end up with flat space

N > Ny a — 0 end up with black hole
Black-hole threshold

0.3033759947 < n, < 0.3033759948
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e Let's say scalar wave

b n =0.30337599471
ng;g vczvb¢zo 0.61
coupled to Einstein’'s equations
0.4 |
e |nitial data 3 |
2/ 2 21
¢ = nexp(—R"/Ry) ey
0.0 acima TN
n =0.30337599479 N
e try out different ... Ve g Py

t

Have critical value n, so that
N < 7« a— 1 end up with flat space

N > Ny a — 0 end up with black hole
Black-hole threshold

0.30337599472 < n, < 0.30337599473
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e Let's say scalar wave
ng = gabvavb ¢ =0

coupled to Einstein’'s equations

e Initial data

b= nexp(~R*/R})

e try out different ...

Have critical value n, so that
N < 7N«

n > M«
Black-hole threshold

a— 1

a— 0

0.6

0.4 1

0.21

0.0 1

n =0.303375994721

n =0.303375994729

6.50 6.55

t

6.45

end up with flat space

end up with black hole

0.303375994729 < n, < 0.303375994730
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A numerical experiment...

e Let's say scalar wave
ng = gabvavb ¢ =0

coupled to Einstein’'s equations

e Initial data

b= nexp(~R*/R})

e try out different ...

Have critical value n, so that
N < 7N«

n > M«
Black-hole threshold

a— 1

a— 0

044 n =0.303375994721

0.3
0.21
0.11
0.0
n =0.303375994729
B 6.5825 6.5850 6.5875 6.5900  6.5925
/

end up with flat space

end up with black hole

0.303375994729 < n, < 0.303375994730
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e Let's say scalar wave
ng = gabvavb ¢ =0

coupled to Einstein’'s equations

e Initial data

b= nexp(~R*/R})

e try out different ...

Have critical value n, so that
N < 7N«

n > M«
Black-hole threshold

a— 1

a— 0

0.41 1 =0.3033750947291
0.3- "
|
0.1_ // “‘\ \—J
0.0 | |
n =0.3033759947299 r/J
B 6.5825 6.5850 6.5875 6.5900 6.5925
¢

end up with flat space

end up with black hole

0.3033759947297 < n, < 0.3033759947298
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Critical Solution

e Let'slook at ¢ forn =~ n, atr =0

0.6 1

0.4 7

0.2 1

—0.27

—0.41

—0.6 1
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Critical Solution

e Let'slook at ¢ forn =~ n, atr =0

0.6 1
e plot as function of proper time 7 0.4
) i " " 0.2 1
— oscillations “accumulate” at
“accumulation” time < 0.0 —
T. ~ 1.5698 —0.2-
—0.4 -
—0.61
0.0 0.5 1.0 1.5
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Critical Solution

e Let'slook at ¢ forn =~ n, atr =0

0.6 1
e plot as function of proper time 7 0.4
) i " " 0.2 1

— oscillations “accumulate” at
“accumulation” time < 0.0
T. ~ 1.5698 —0.2-
e plot as function of —0.41
T = —log(m — 7) —0.61

0.0 25 5.0 75  10.0
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e Let'slook at ¢ forn =~ n, atr =0

0.6
e plot as function of proper time 7 0.41
. . 0o 3] 02'

— oscillations “accumulate” at
“accumulation” time < 0.01
T. ~ 1.5698 —0.21
e plot as function of —0.41
T = —log(m — 7) —0.61

00 25 50 75 100 125
T

—> critical solution performs periodic oscillations in T' (discrete self-similarity)

— "“Choptuik spacetime”

Thomas Baumgarte, Bowdoin College 4
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Critical Phenomena in gravitational collapse

Plot mass M of forming black

function of parameter n

—> find power-law scaling
M ~ (g —n.)’

with critical exponent v universal
(for given matter field)

hole as

e reminiscent of critical phenomena in other

fields of physics

e can form arbitrarily small black holes

Thomas Baumgarte, Bowdoin College

In MI3H

T | T I T ] [0
o
= 0.376 0®
7,_5‘ = el o
—-1.0 o° —
o°
o
o
L o
o
o
o
J° R E—
-3.0 © B 1
o & L 2 ® o
O S
OO L o —]
- s |€ L1
o
o ®,
_5.0 OO L | 1 | 1 |
—26.0 —22.0 —18.0 —14.0
In |¢'0 T (:b:)

[Choptuik, 1998]
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Consider  initial ~ matter  distribution
parametrized by 7 (say density) and
! I ! I ! I [}
evolve... 0.376 o°
Y, — VY o°
0 | P o0 -
Then critical parameter 7, separates Oo°°
o supercritical data: form black hole z i 0"
.. : = o°
o subcritical data: don't p= o T
=30 OO < — . e |
] - OO §m i Oooc ]
Close to 7, observe critical phenomena: I o° = € al
o ] ] ]
ooo QSO
e black hole formed from supercritical data —5.0 =2 ' ]
—260 -220  —180  —14.0
has mass x
|ﬂ|¢)0—¢0

M =~ |n —n." |
[Choptuik, 1998]

where 7 is universal

e spacetime approaches self-similar critical solution
[Choptuik, 1993]
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e Solution contracts without changing
shape. . .

Thomas Baumgarte, Bowdoin College 7
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Self-similarity

e Solution contracts without changing
shape. ..
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Self-similarity

e Solution contracts without changing
shape. ..
e .. .towards accumulation event at 7 = 7,

Thomas Baumgarte, Bowdoin College 9
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Self-similarity

e Solution contracts without changing
shape. . .

e ...towards accumulation event at 7 = T,
e radius R proportional to 7, — T,

R~ (1.—71)
— dimensionless quantities are functions of
R
f=——
. Te — T
only, i.e.
7Z = Z,(§)

Thomas Baumgarte, Bowdoin College 10
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Self-similarity

e Solution contracts without changing
shape. . .

e ...towards accumulation event at 7 = T,
e radius R proportional to 7, — T,

R~ (1.—71)
— dimensionless quantities are functions of
R
f=——
. Te — T
only, i.e.
7Z = Z,(§)
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Self-similarity

e Solution contracts without changing
shape. . .

e ...towards accumulation event at 7 = T,
e radius R proportional to 7, — T,

R~ (1.—71)
— dimensionless quantities are functions of
R
f=——
. Te — T
only, i.e.
7Z = Z,(§)

—> no preferred global length scale

What sets scale of forming black holes?

Thomas Baumgarte, Bowdoin College 12



Critical Phenomena Self-similarity

e Phase I:
from initial data to something close to critical solution
(how close? depends on degree of fine-tuning)

e Phase Il:

critical solution plus perturbation
(until perturbation becomes nonlinear)

e Phase lll:

collapse to black hole or disperse

—> length scale set by size of self-similar solution at transition from Phase |l to Ill

Thomas Baumgarte, Bowdoin College 13
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Phase |l: Perturbations of Critical Solutions

e Consider perturbations ( of critical solution

Thomas Baumgarte, Bowdoin College 14
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Phase |l: Perturbations of Critical Solutions

e Consider perturbations ( of critical solution

&=R/(t+ — T)=const

\

Thomas Baumgarte, Bowdoin College 15
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Phase Il: Perturbations of Critical Solutions

Phase |l: Perturbations of Critical Solutions

Thomas Baumgarte, Bowdoin College

e Consider perturbations ( of critical solution

e assume that only one mode is unstable
—> grows at rate A in T = — log(7. — 7)

¢ < exp(AT) = (1, — 1)

16



Critical Phenomena Phase |l: Perturbations of Critical Solutions

Phase |l: Perturbations of Critical Solutions

e Consider perturbations ( of critical solution

e assume that only one mode is unstable
—> grows at rate A in T = — log(7. — 7)

¢ < exp(AT) = (1, — 1)

e to leading order also proportional to n — 7,

G oc (n—n)(m— 1)~

Thomas Baumgarte, Bowdoin College 17
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Phase Il: Perturbations of Critical Solutions

Phase |l: Perturbations of Critical Solutions

R

e Consider perturbations ( of critical solution

e assume that only one mode is unstable
—> grows at rate A in T = — log(7. — 7)
¢ < exp(A\T) = (1, — 1)~

e to leading order also proportional to n — 7,

(ox (n—n)(r—1)"

Mode becomes nonlinear when ¢ = const

—> determines length scale

R o (1. — 7) oc (n — mu)¥?

Thomas Baumgarte, Bowdoin College
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Phase Il: Perturbations of Critical Solutions

Phase |l: Perturbations of Critical Solutions

R

Mode becomes nonlinear when ¢ = const

—> determines length scale
R o (7o — ) o< (0 — o)t
—> scaling laws, e.g.
M o< (n—mny)’

with v = 1/A
[Koike et.al., 1995; Maison 1995]

Thomas Baumgarte, Bowdoin College

e Consider perturbations ( of critical solution

e assume that only one mode is unstable
—> grows at rate A in T = — log(7. — 7)

C x exp(AT) = (1 — 7‘)_A
e to leading order also proportional to n — 1,

(ox (n—n)(r—1)"

100,

~1/2

107"

1072,

10710 108 1076
|U A'UA

1/X =0.3558 v = 0.356
[Celestino & TWB, 2018]

104 102

19



Critical Phenomena Phase |l: Perturbations of Critical Solutions

Continuous versus discrete self-similarity

For fluid, for example, encounter con-

0.6 1

tinuous self-similarity (CSS) »
y 0.2 1

For scalar waves, expect ‘“super- . |
imposed” oscillation oo
—> discrete self-similarity (DSS) o4l
—0.61

0.0 25 5.0 75 100

—> leaves periodic “wiggle” in power-
law scaling

[Gundlach, 1997; Hod & Piran, 1997]

201

151

ln(pmaX)

10

—30 —25 —20 —15 ~10
ln(n* - 77)
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Critical Phenomena Key ingredients...

e Unique critical solution, either CSS or DSS
e Single unstable mode, Lyapunov exponent \

—> Power-law scaling with critical exponent v = 1/

e Pretty well established in spherical symmetry...

— ... but what about non-spherical cases??

Thomas Baumgarte, Bowdoin College 21
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Critical collapse of gravitational waves

Critical collapse of gravitational waves

VOLUME 70, NUMBER 20 PHYSICAL REVIEW LETTERS 17 MAY 1993

Critical Behavior and Scaling in Vacuum Axisymmetric Gravitational Collapse

Andrew M. Abrahams(®)
Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853

Charles R. Evans
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
(Received 22 December 1992)

We report a second example of critical behavior in gravitational collapse. Collapse of axisymmetric
gravitational wave packets is computed numerically for a one-parameter family of initial data. A
black hole first appears along the sequence at a critical parameter value p*. As with spherical scalar-
field collapse, a power law is found to relate black-hole mass (the order parameter) and critical
separation: Mgy  |p — p*|?. The critical exponent is 8 ~ 0.37, remarkably close to that observed
by Choptuik. Near-critical evolutions produce echoes from the strong-field region which appear to
exhibit scaling.

Thomas Baumgarte, Bowdoin College
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Numerous attempts to reproduce this...

Despite many attempts...

le.g. Alcubierre et.al., 2000; Garfinkle & Duncan, 2001; Santamaria, 2006; Rinne,
2008; Sorkin, 2011; Hilditch et.al., 2013; Hilditch et.al., 2017]

... the results of Abrahams & Evans have yet to be reproduced.

Issues...

e Few of the current 3D numerical relativity codes are designed for critical-collapse
simulations

e Some evidence that coordinate conditions that work for other simulations do not
work well for critical collapse of gravitational waves

Thomas Baumgarte, Bowdoin College 23



Critical Phenomena Critical collapse of gravitational waves

Collapse of Brill waves

e Fine-tune Brill waves to black-hole threshold
e Some agreement with Abrahams & Evans

e But lack of clear evidence for DSS...
[Hilditch, Weyhausen, & Briigmann, 2017]

14
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Critical Phenomena Critical collapse of electromagnetic waves

Solve Einstein-Maxwell system in axisymmetry
e Forms system of equations similar to that for scalar waves
e Does not allow spherically symmetric critical solution

Consider dipolar initial data of the form

£% — 4 (e—(r—ro)2 4+ 6—(T+7’0)2>

Evolve with code that solves BSSN equations in spherical polar coordinates
[Baumgarte et.al., 2013]

e “gravitational gauge”: 1+4log slicing; zero shift

e “"EM gauge”: choose ® =n*A, =0

—> fine-tune parameter 7 to critical value 7,...

[Baumgarte, Gundlach, & Hilditch, 2019]

Thomas Baumgarte, Bowdoin College 25



Critical Phenomena Critical collapse of electromagnetic waves

The critical solution

As invariant diagnostic, consider

A — gaACL
T (e
Here
e A, electrodynamic vector potential —
e £ =0/0p axisymmetric Killing vec- flf""’ Ry o
1 -1.500-00
tor

o I'=—In(r —7)
e )\ affine parameter along null geodesics

—> approximate DSS, with period A ~ (.55 — but not exact

Thomas Baumgarte, Bowdoin College 26



Critical Phenomena Critical collapse of electromagnetic waves

Scaling
e Approximate scaling
max —27
IOC ~ (?7* _ 77) .....'.O x|
c 102 5 e
with v = 0.145 — but not exact o %%
%&O% U
104
_ ST . =0,N=1
e wiggles not exactly periodic 2 S P Pl %%’&&
104 x  rg=0,N=3 Brsg ... By
o r0=0N=4 O>E) ........
o] ro = 3, N=2
07y % pp=3,N=3
........ 0.08 (n, — 77)—2"/
0t 100 107 10% 107
N — 1
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Scaling
e Approximate scaling
max — 2
IOC = (?7* T 77) ..,_.'.o X L
. 102 5 P
with v = 0.145 — but not exact o %%
%&O% s
104
I iodi g A r=0,N=1 g ...
® W|gg|e§ r.10t exactly periodic SN | %%@&%
— reminiscent of 10°F x  rp=0,N=3 S| Boug
o rn=0N=4 O>E) .......
7 | | : : ) o rp=3,N=2
079 x rg=3N=3
6 = T 0.08 (, — )~
5L . 1011 107 107 10- 103
i-\ e —1
= 4 .
&
2.0 ]
2 - -
1 | | | | | | |
-2 0 2 4 6 8 10 12 14

—log(A. — A)

[Hilditch et.al., 2017]
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Behavior of lapse

0 [ T k i
I 100_
N ]
I 1074
i
S0 1 s
o B
- L R 10724 1 :
10715 !
-3 ~ subcrit. ] :
1 1
10734 ----- supercrit. . mE I
By 31 32 |
I A 0 10 20 30
0 10 20 30 40 t
t/M

Gravitational waves

[Abrahams & Evans, 1994]

Electromagnetic waves

—> No conclusive evidence for strict periodicity in either case
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Is the critical solution unique?

-0.500

B R Centered (19 = 0)

T T ispoo Off-centered (ry = 3)

— No evidence for strict uniqueness

Thomas Baumgarte, Bowdoin College 29
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Is the critical solution unique?

0'5657;“””;» .50
-0.500

! e Centered (ry = 0)

T Rr L Off-centered (ry = 3)

—> No evidence for strict uniqueness

—> Considering more general initial data suggests non-uniqueness of critical solution
[Perez Mendoza et.al., in prep]
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Critical Phenomena Summary

e Numerical simulations of critical collapse of electromagnetic waves suggest...

o ... approximate, but not exact DSS of critical solution
o ... approximate, but not exact power-law scaling
o ... similarities with results for gravitational waves

e Absence of exact DSS and scaling might be caused by...
o ... interplay between gravitational and electromagnetic degrees of freedom

[Gundlach et.al., 2019]
o ... interplay between different multipole moments

—> appear to be related to non-spherical nature of critical solution

e No evidence for uniqueness of critical solution
[Fernandez et.al., 2020]

Our notion of critical phenomena in gravitational collapse in-
vokes the existence of a unique, strictly self-similar critical solu-
tion with a single unstable mode. This notion does not appear
to apply for electromagnetic (or gravitational) waves.

Thomas Baumgarte, Bowdoin College
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