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A numerical experiment...

• Consider scalar wave

�φ ≡ gab∇a∇b φ = 0

coupled to Einstein’s equations

• Initial data

φ = η exp(−R2/R2
0)

• try out different η...
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A numerical experiment...
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A numerical experiment...

• Let’s say scalar wave
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A numerical experiment...
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A numerical experiment...

• Let’s say scalar wave
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A numerical experiment...

• Let’s say scalar wave

�φ ≡ gab∇a∇b φ = 0
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A numerical experiment...

• Let’s say scalar wave
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A numerical experiment...

• Let’s say scalar wave
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A numerical experiment...

• Let’s say scalar wave

�φ ≡ gab∇a∇b φ = 0

coupled to Einstein’s equations
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Critical Solution

• Let’s look at φ for η ≈ η∗ at r = 0
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Critical Solution

• Let’s look at φ for η ≈ η∗ at r = 0

• plot as function of proper time τ

=⇒ oscillations “accumulate” at
“accumulation” time

τ∗ ≈ 1.5698
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Critical Solution

• Let’s look at φ for η ≈ η∗ at r = 0

• plot as function of proper time τ

=⇒ oscillations “accumulate” at
“accumulation” time

τ∗ ≈ 1.5698

• plot as function of

T ≡ − log(τ∗ − τ )
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Critical Solution

• Let’s look at φ for η ≈ η∗ at r = 0

• plot as function of proper time τ

=⇒ oscillations “accumulate” at
“accumulation” time

τ∗ ≈ 1.5698

• plot as function of

T ≡ − log(τ∗ − τ )
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=⇒ critical solution performs periodic oscillations in T (discrete self-similarity)

=⇒ “Choptuik spacetime”
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Can we form arbitrarily small black holes?

Plot mass M of forming black hole as
function of parameter η

=⇒ find power-law scaling

M ' (η − η∗)γ

with critical exponent γ universal
(for given matter field)

• reminiscent of critical phenomena in other
fields of physics

• can form arbitrarily small black holes

[Choptuik, 1998]
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Critical Phenomena in Gravitational Collapse

Consider initial matter distribution
parametrized by η (say density) and
evolve...

Then critical parameter η∗ separates
◦ supercritical data: form black hole
◦ subcritical data: don’t

Close to η∗ observe critical phenomena:

• black hole formed from supercritical data
has mass

M ' |η − η∗|γ

where γ is universal
[Choptuik, 1998]

• spacetime approaches self-similar critical solution

[Choptuik, 1993]
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Self-similarity

• Solution contracts without changing
shape. . .
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Self-similarity

• Solution contracts without changing
shape. . .
• . . . towards accumulation event at τ = τ∗
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Self-similarity

• Solution contracts without changing
shape. . .
• . . . towards accumulation event at τ = τ∗
• radius R proportional to τ∗ − τ ,

R ' (τ∗ − τ )

=⇒ dimensionless quantities are functions of

ξ ≡ R

τ∗ − τ
only, i.e.

Z = Z∗(ξ)
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Self-similarity

• Solution contracts without changing
shape. . .
• . . . towards accumulation event at τ = τ∗
• radius R proportional to τ∗ − τ ,
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Thomas Baumgarte, Bowdoin College 11



Critical Phenomena Self-similarity

Self-similarity

• Solution contracts without changing
shape. . .
• . . . towards accumulation event at τ = τ∗
• radius R proportional to τ∗ − τ ,

R ' (τ∗ − τ )

=⇒ dimensionless quantities are functions of

ξ ≡ R

τ∗ − τ
only, i.e.

Z = Z∗(ξ)

=⇒ no preferred global length scale

What sets scale of forming black holes?

Thomas Baumgarte, Bowdoin College 12
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Three phases of evolution

• Phase I:
from initial data to something close to critical solution
(how close? depends on degree of fine-tuning)

• Phase II:
critical solution plus perturbation
(until perturbation becomes nonlinear)

• Phase III:
collapse to black hole or disperse

=⇒ length scale set by size of self-similar solution at transition from Phase II to III

Thomas Baumgarte, Bowdoin College 13
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Phase II: Perturbations of Critical Solutions

• Consider perturbations ζ of critical solution
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Phase II: Perturbations of Critical Solutions

• Consider perturbations ζ of critical solution

• assume that only one mode is unstable
=⇒ grows at rate λ in T = − log(τ∗ − τ )

ζ ∝ exp(λT ) = (τ∗ − τ )−λ
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Phase II: Perturbations of Critical Solutions

• Consider perturbations ζ of critical solution

• assume that only one mode is unstable
=⇒ grows at rate λ in T = − log(τ∗ − τ )

ζ ∝ exp(λT ) = (τ∗ − τ )−λ

• to leading order also proportional to η − η∗
ζ ∝ (η − η∗)(τ∗ − τ )−λ
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Phase II: Perturbations of Critical Solutions

• Consider perturbations ζ of critical solution

• assume that only one mode is unstable
=⇒ grows at rate λ in T = − log(τ∗ − τ )

ζ ∝ exp(λT ) = (τ∗ − τ )−λ

• to leading order also proportional to η − η∗
ζ ∝ (η − η∗)(τ∗ − τ )−λ

Mode becomes nonlinear when ζ = const
=⇒ determines length scale

R ∝ (τ∗ − τ ) ∝ (η − η∗)1/λ
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Phase II: Perturbations of Critical Solutions

• Consider perturbations ζ of critical solution

• assume that only one mode is unstable
=⇒ grows at rate λ in T = − log(τ∗ − τ )

ζ ∝ exp(λT ) = (τ∗ − τ )−λ

• to leading order also proportional to η − η∗
ζ ∝ (η − η∗)(τ∗ − τ )−λ

Mode becomes nonlinear when ζ = const
=⇒ determines length scale

R ∝ (τ∗ − τ ) ∝ (η − η∗)1/λ

=⇒ scaling laws, e.g.

M ∝ (η − η∗)γ

with γ = 1/λ
[Koike et.al., 1995; Maison 1995]
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Continuous versus discrete self-similarity

For fluid, for example, encounter con-
tinuous self-similarity (CSS)

For scalar waves, expect “super-
imposed” oscillation
=⇒ discrete self-similarity (DSS)
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=⇒ leaves periodic “wiggle” in power-
law scaling
[Gundlach, 1997; Hod & Piran, 1997]
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Critical Phenomena Key ingredients...

Key ingredients...

• Unique critical solution, either CSS or DSS

• Single unstable mode, Lyapunov exponent λ

=⇒ Power-law scaling with critical exponent γ = 1/λ

• Pretty well established in spherical symmetry...

=⇒ ... but what about non-spherical cases??

Thomas Baumgarte, Bowdoin College 21
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Critical collapse of gravitational waves
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Numerous attempts to reproduce this...

Despite many attempts...

[e.g. Alcubierre et.al., 2000; Garfinkle & Duncan, 2001; Santamaria, 2006; Rinne,
2008; Sorkin, 2011; Hilditch et.al., 2013; Hilditch et.al., 2017]

... the results of Abrahams & Evans have yet to be reproduced.

Issues...

• Few of the current 3D numerical relativity codes are designed for critical-collapse
simulations

• Some evidence that coordinate conditions that work for other simulations do not
work well for critical collapse of gravitational waves
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Collapse of Brill waves

• Fine-tune Brill waves to black-hole threshold

• Some agreement with Abrahams & Evans

• But lack of clear evidence for DSS...

[Hilditch, Weyhausen, & Brügmann, 2017]
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Critical collapse of electromagnetic waves

Solve Einstein-Maxwell system in axisymmetry

• Forms system of equations similar to that for scalar waves

• Does not allow spherically symmetric critical solution

Consider dipolar initial data of the form

Eφ = −4η

ψ6

(
e−(r−r0)

2
+ e−(r+r0)

2
)

Evolve with code that solves BSSN equations in spherical polar coordinates

[Baumgarte et.al., 2013]

• “gravitational gauge”: 1+log slicing; zero shift

• “EM gauge”: choose Φ ≡ naAa = 0

=⇒ fine-tune parameter η to critical value η∗...

[Baumgarte, Gundlach, & Hilditch, 2019]
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The critical solution

As invariant diagnostic, consider

Aξ ≡
ξaAa

(ξaξa)1/2

Here
• Aa electrodynamic vector potential
• ξa = ∂/∂ϕ axisymmetric Killing vec-
tor
• T = − ln(τ∗ − τ )
• λ affine parameter along null geodesics

=⇒ approximate DSS, with period ∆ ' 0.55 – but not exact
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Critical Phenomena Critical collapse of electromagnetic waves

Scaling

• Approximate scaling

ρmax
c ' (η∗ − η)−2γ

with γ = 0.145 – but not exact

• wiggles not exactly periodic
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Critical Phenomena Critical collapse of electromagnetic waves

Scaling

• Approximate scaling

ρmax
c ' (η∗ − η)−2γ

with γ = 0.145 – but not exact

• wiggles not exactly periodic
=⇒ reminiscent of

[Hilditch et.al., 2017]
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Behavior of lapse

0 10 20 30
t
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100

α
c
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31 32

10−1

Gravitational waves Electromagnetic waves

[Abrahams & Evans, 1994]

=⇒ No conclusive evidence for strict periodicity in either case
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Is the critical solution unique?

Centered (r0 = 0)

Off-centered (r0 = 3)

=⇒ No evidence for strict uniqueness
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Critical Phenomena Critical collapse of electromagnetic waves

Is the critical solution unique?

Centered (r0 = 0)

Off-centered (r0 = 3)

=⇒ No evidence for strict uniqueness

=⇒ Considering more general initial data suggests non-uniqueness of critical solution
[Perez Mendoza et.al., in prep]
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Summary

• Numerical simulations of critical collapse of electromagnetic waves suggest...
◦ ... approximate, but not exact DSS of critical solution
◦ ... approximate, but not exact power-law scaling
◦ ... similarities with results for gravitational waves

• Absence of exact DSS and scaling might be caused by...
◦ ... interplay between gravitational and electromagnetic degrees of freedom

[Gundlach et.al., 2019]
◦ ... interplay between different multipole moments
=⇒ appear to be related to non-spherical nature of critical solution

• No evidence for uniqueness of critical solution
[Fernández et.al., 2020]

Our notion of critical phenomena in gravitational collapse in-
vokes the existence of a unique, strictly self-similar critical solu-
tion with a single unstable mode. This notion does not appear
to apply for electromagnetic (or gravitational) waves.
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